Radiolabeled Europium Loaded Theranostic Liposomal Nanoparticles for Effective

Radioisotope induced Photodynamic Therapy

Hyung-Jun Im, MD, PhD

Purpose: Photodynamic therapy (PDT) is conducted by a photosensitizer (PS) and a light which can excite the PS to remove the target tumor tissues locally through reactive oxygen species (ROS) production. Radioisotope induced luminescence such as Cerenkov luminescence could be used for PDT, which has an advantage of independence of external light. However, Cerenkov luminescence is a relatively weak light which leaves uncertainty for clinical translation of this approach. Meanwhile, the interaction between radioisotope and nanoparticles with high Z materials such as Europium (Eu) can emit radioluminescence, which also can be used for PDT. Herein, we developed radiolabeled Eu loaded liposomal nanoparticles for enhanced PDT and *in vivo* imaging.

Methods: The Eu³⁺ ion was chelated to diethylenetriaminepentaacetic acid (DTPA) (Eu-DTPA). Victoria blue-BO (VBBO) was chosen for PS. Liposome was synthesized by a self-assembly method using phosphatidylcholine (PC) derivatives. Eu-DTPA and VBBO were loaded into the hydrophilic core part of the structure during the selfassembly method to make Eu loaded (Eu-Lipo), Eu and VBBO loaded (Eu/VBBO-Lipo), and VBBO loaded liposome (VBBO-Lipo). The liposome nanoparticles were further modified by using NOTA and PEG for radiolabeling and long circulation in vivo. Eu-Lipo, VBBO-Lipo, and Eu/VBBO-Lipo were radiolabeled with ⁶⁴Cu (⁶⁴Cu-Eu-Lipo, ⁶⁴Cu-VBBO-Lipo, ⁶⁴Cu-Eu/VBBO-Lipo) and tested for luminescence using IVIS. *In vitro* ⁶⁴Cu induced PDT was conducted. ⁶⁴Cu-Eu/VBBO-Lipo was injected intravenously to mouse tumor models, and the positron emission tomography (PET) images were acquired at 0, 4, 24, and 48 hours after the injection.

Results: The hydrodynamic size of self-assembled Eu/VBBO-Lipo was 80 ± 15 nm. Eu/VBBO-Lipo had high stability for seven days in the physiological conditions. ⁶⁴Cu-Eu-Lipo (Radioluminescence) showed two-fold higher luminescence intensity than ⁶⁴Cu (Cerenkov luminescence) (P < 0.0001). ⁶⁴Cu-VBBO-Lipo showed a lower luminescence intensity than ⁶⁴Cu because of Cerenkov luminescence energy transfer (CLET), while ⁶⁴Cu-Eu/VBBO-Lipo showed a lower luminescence intensity than ⁶⁴Cu because of Cerenkov luminescence energy transfer (CLET), while ⁶⁴Cu-Eu/VBBO-Lipo showed a lower luminescence intensity than ⁶⁴Cu-Eu/VBBO-Lipo because of radioluminescence energy transfer (RET). RET efficiency (~27.6% of RL) was about 6 times higher than CLET efficiency (~4.7% of CL) (P < 0.0001). *In vivo* PET imaging demonstrated that ⁶⁴Cu-Eu/VBBO-Lipo showed a substantially long blood pool circulation with circulation half-life of 10.4 hours and a sufficient tumor uptake at 24 hours after the injection (~ 20%ID/g). ROS generation and PDT effect were significantly higher in ⁶⁴Cu-Eu/VBBO-Lipo than ⁶⁴Cu-VBBO-Lipo (P < 0.001), and P < 0.001).

Conclusions: ⁶⁴Cu-Eu/VBBO-Lipo demonstrated a bright radioluminescence, effective RET, ROS production, and PDT effects, which were superior to Cerenkov induced PDT using ⁶⁴Cu-VBBO-Lipo. Furthermore, ⁶⁴Cu-Eu/VBBO-Lipo showed long circulation and effective passive targeting in mouse tumor model. Based on these findings, ⁶⁴Cu-Eu/VBBO-Lipo could be successfully utilized for radioisotope induced PDT.